Cationic amphipathic histidine-rich peptides for gene delivery.
نویسندگان
چکیده
Besides being a useful tool in research, gene transfer has a high potential as treatment for a variety of genetic and acquired diseases. However, in order to enable a gene to become a pharmaceutical, efficient and safe methods of delivery have to be developed. We recently found that cationic amphipathic histidine-rich peptide antibiotics can efficiently deliver DNA into mammalian cells. Our lead compound, LAH4 (KKALLALALHHLAHLALHLALALKKA), demonstrated in vitro transfection efficiencies comparable to those of commercially available reagents. Synthesis and evaluation of LAH mutants provided evidence that the transfection efficiency depends on the number and positioning of histidine residues in the peptide as well as on the pH at which the in-plane to transmembrane transition takes place. Moreover, recent results suggest that binding of the DNA complexes to the plasma membrane is mediated by heparan sulfate proteoglycans and that anionic phospholipids may be involved in the endosomal destabilization process. Finally, we also describe in this review the rationale that led to the development of LAH4 as a DNA carrier as well as the biophysical methods that have allowed us to propose a model which could explain the way this peptide destabilizes the endosomal bilayer.
منابع مشابه
Histidine-rich amphipathic peptide antibiotics promote efficient delivery of DNA into mammalian cells.
Gene delivery has shown potential in a wide variety of applications, including basic research, therapies for genetic and acquired diseases, and vaccination. Most available nonviral systems have serious drawbacks such as the inability to control and scale the production process in a reproducible manner. Here, we demonstrate a biotechnologically feasible approach for gene delivery, using syntheti...
متن کاملEnhanced membrane disruption and antibiotic action against pathogenic bacteria by designed histidine-rich peptides at acidic pH.
The histidine-rich amphipathic cationic peptide LAH4 has antibiotic and DNA delivery capabilities. Here, we explore the interaction of peptides from this family with model membranes as monitored by solid-state (2)H nuclear magnetic resonance and their antibiotic activities against a range of bacteria. At neutral pH, the membrane disruption is weak, but at acidic pH, the peptides strongly distur...
متن کاملIn vitro Delivery of HIV-1 Nef Antigen by Histidine-rich nona-arginine and Latarcin 1 peptide
Introduction: The Nef accessory protein is an attractive antigenic candidate in the development of HIV-1 DNA- or protein-based vaccines. The most crucial disadvantage of DNA and protein-based vaccines is their low immunogenicity, which can be improved by cell-penetrating peptides (CPPs) as effective carrier molecules. Methods: In this study, the HIV-1 Nef protein was generated in the Escherichi...
متن کاملSecondary Structure Effects on the Acidity of Histidine and Lysine-Based Peptides Model; A Theoretical Study
In this study, the effect of the secondary structure of the protein on the acid strength of three structures of random (R), alpha helix (α) and beta sheet (b) were investigated theoretically. These structures are related to the cationic amino acids of histidine and lysine in the polypeptide chain of eight-glycine residue. Computational methods at the HF, B3LYP, X3LYP and M05-2X levels in t...
متن کاملA Gene Delivery Method Mediated by Three Arginine-rich Cell-penetrating Peptides in Plant Cells
The transient gene delivery systems are generally mediated by viral infection, particle bombardment, electroporation, and microinjection for transferring exogenous DNAs into host cells. Recently, the peptide-mediated DNA delivery system became a novel tool for gene transfer, and these peptides, such as cell-penetrating peptides (CPPs), contained the ability of permeating plasma membranes and ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1758 3 شماره
صفحات -
تاریخ انتشار 2006